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THE QUANTUM WAY

§ The Gelfand correspondence between compact Hausdorff
spaces and commutative, unital C˚-algebras has given rise
to a large number of related theories.

Classical Quantum

compact Hausdorff space ÐÑ unital C˚-algebra
compact group ÐÑ compact quantum group
compact (spin) manifold ÐÑ spectral triple
compact metric space ÐÑ compact quantum metric space

§ The theory is due to Rieffel and builds on that of order unit
spaces.
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A PRIMER ON ORDER UNIT SPACES

§ Initiated by Kadison in the 1950’s.
§ An order unit space is a unital (real) subspace V of the

selfadjoint part of Asa of a unital C˚-algebra A.
§ The usual partial order on Asa descends to one on V.
§ There is an abstract definition as well, shown by Kadison

to be equivalent to the one above.
§ One may then define the state space of V:

SpVq :“ tµ : V Ñ R | µ linear, bounded with }µ} “ 1 “ µp1qu

§ As in C˚-theory, states are automatically positive and SpVq
is a weak˚-compact subset of the dual space V1.

 cqms
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DEFINITION (RIEFFEL, 1999)
An (order unit) compact quantum metric space is a pair pV, Lq where
V is an order unit space and L : V Ñ r0,8q is a seminorm such that:
(i) Lpaq “ 0 iff a P R.1

(ii) The quantity

ρLpµ, νq :“ supt|µpaq ´ νpaq| : Lpaq ď 1u, µ, ν P SpVq

defines a metric on SpVq which metrises the weak˚-topology.
In this situation, L is called a Lip-norm.

§ If pX, dq is a compact metric space then

V “ CLippXqsa :“ tf P CpXqsa : f is Lipschitz continuousu

becomes a compact quantum metric space when endowed
with Lpf q :“ sup

!

|f pxq´f pyq|
dpx,yq : x ‰ y

)

.
§ The metric ρL on SpVq “ ProppXq is the so-called

Monge-Kantorovich metric and ρLæX “ d.
 C˚-algebraic qcms
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C˚-ALGEBRAIC CQMS
§ The setting of order unit spaces may seem strange at first,

and one can also take a more C˚-algebraic approach:

DEFINITION (RIEFFEL, LI)
Let A be a unital C˚-algebra equipped with a seminorm
L : A Ñ r0,8s (allowed to be infinite) satisfying that Lpx˚q “ Lpxq
for all x P A. Then pA, Lq is called a C˚-algebraic CQMS if
(i) Lpaq “ 0 iff a P C.1

(ii) The set V :“ ta P A | Lpaq ă 8u is dense in A.
(iii) ρLpµ, νq :“ supt|µpaq ´ νpaq| : Lpaq ď 1u metrises the

weak˚-topology on SpAq.

§ If one just assumes (i) and (ii) then it can be checked that
pA, Lq is a C˚-algebraic CQMS iff pVsa, LæVsaq is an order
unit CQMS, and res : SpAq Ñ SpVsaq is a bijective isometry.

 NCG examples
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EXAMPLES FROM NCG
§ If pA,H, Dq is a spectral triple, then sometimes – but not

always – one obtains a CQMS by defining

Lpaq :“ }rD, as}

for those a P A for which rD, as extends boundedly to H. In
this case one has a compact spectral metric space [Bellissard-
Marcolli-Reihani].

§ This is the case when A “ CpMq for a compact, connected,
Riemannian spin manifold and D is the Dirac operator, in
which case the metric ρL on SpCpMqq restricts to the
Riemannian metric on M Ă SpCpMqq [Connes].

§ When Γ is a word hyperbolic group (or Zn) equipped with
a length function ` then D`pδγq :“ `pγqδγ turns
pC˚redpΓq, `

2pΓq, D`q into a spectral metric space [Ozawa-
Rieffel].

 GH-distance
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GROMOV-HAUSDORFF DISTANCE

§ Given compact subsets A, B Ă X in a metric space pX, dq.
§ Then their Hausdorff distance is defined by

distd
HpA, Bq :“ inftr ą 0 | A Ă BrpBq and B Ă BrpAqu

§ And for two compact metric spaces pX1, d1q and pX2, d2q

their Gromov-Hausdorff distance is defined as

distGHpX1, X2q :“ inf
d

!

distd
HpX1, X2q

)

where the infimum runs over all metrics on X1 \X2
restricting to d1 and d2 respectively.

 quantum-GH-distance
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QUANTUM GROMOV-HAUSDORFF DISTANCE

§ If pV1, L1q and pV2, L2q are order unit CQMS then a
seminorm L : V1 ‘V2 Ñ r0,8q is called admissible if L is a
Lip-norm and the induced quotient seminorms on V1 and
V2 agree with L1 and L2.

§ The two projections V1 ‘V2 Ñ Vi dualise to injections
SpViq Ñ SpV1 ‘V2q.

§ And Rieffel then defines

distq
GHpV1, V2q :“ inf

 

distρL
H pSpV1q, SpV2qq : L admissible

(

§ This is symmetric, satisfies the triangle-inequality, and
distance zero is equivalent to Lip-isometric isomorphism
(at the level of completions).

§ The map CLip : pX, dq ÞÑ pCLippXqsa, Ldq is a contraction, but
not an isometry.

§ However, CLip is a homeomorphism onto its image.

 remarks
8 / 16
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REMARKS ON THE DEFINITIONS

§ For C˚-algebraic CQMS, one defines their quantum
GH-distance as that of their (Lip-norm finite) self-adjoint
parts.

§ So distance zero only means that their order unit structures
are identified in a Lip-norm preserving manner.

§ More elaborate quantum-distances, due to Li, Kerr and
Latrémolière, fix this problem, in that distance zero here
implies isomorphism at the C˚-algebra level.

§ Li also has a version of distq
GH which is computed directly

at the algebra level, rather than via the state spaces.

 Overview of results
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CONVERGENCE AND CONTINUITY RESULTS

§ Non-commutative tori vary continuously [Rieffel].
§ Fuzzy spheres (i.e. matrix algebras) converge to the

classical 2-sphere [Rieffel].
§ Approximation of non-commutative solenoids by

non-commutative tori [Latrémolière-Packer].
§ AF-algebras are approximated by matrix algebras

[Aguilar-Latrémolière].
§ However, for some reason crossed products seemed not

well understood.

 crossed products
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CROSSED PRODUCTS

§ If B is a (unital) C˚-algebra and β : B Ñ B is an
automorphism, then one can encode the dynamics of β in
the crossed product B¸β Z :“ C˚pB, Uq.

§ Suppose further that B is a C˚-algebraic CQMS for a
densely defined seminorm LB : VB Ñ r0,8r.

§ Then the following questions are very natural:

QUESTION A When is B¸β Z again a CQMS in a natural way?

QUESTION B How does B¸β Z vary in distq
GH if β varies?

§ Question A was addressed by Bellissard-Marcolli-Reihani
(2010) and Hawkins-Skalski-White-Zacharias (2013) in the
setting of spectral metric spaces, with positive results if the
action is equicontinuous: supnPZ LBpβ

npbqq ă 8.
§ We found no results in the litterature pertaining to

Question B, and in a joint project with Jens Kaad, we set
out to look at these two problems.
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§ Regarding Question A, we obtained the following:

THEOREM A (KAAD-K, 2019)
Let pB, VB, LBq be a C˚-algebraic QCMS such that LB is lower semi
continuous on its domain VB, and assume that β P AutpBq satisfies
that βpVBq “ VB. Then for every p P t1, . . . ,8u, the seminorm
Lp : ccpZ, VBq Ñ r0,8r defined on x :“

ř

n xpnqUn as

Lppxq :“ max

#

›

›

›

ÿ

n
nxpnqUn

›

›

›
, }LB ˝ x}p, }Lp ˝ x˚}p

+

turns B¸β Z into a C˚-algebraic QCMS.

§ In the case of spectral metric spaces, we also have more
geometric criteria going beyond the equicontinuous case
considered earlier, but with the price that the crossed
products are, in general, only non-spectral CQMS.

 continuity results
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§ In connection with Question B, we proved the following:

THEOREM B
Let pβtqtPT be a family of automorphisms of B parametrised by a
compact Hausdorff space T. Assume moreover that

§ LB is lower semi continuous on VB.
§ βtpVBq “ VB for all t P T.
§ t ÞÑ βtpbq is continuous for all b P B
§ LBpβtpbqq “ LBpbq for all b P VB (Lip-isometry)

Then for each of the seminorms Lp from Theorem A, the family of
B¸βt Z of CQMS varies continuously in the parameter t with
respect to the quantum Gromov-Hausdorff distance.

§ As an example, Theorem B applies to a compact metric
space pX, dq and a family pϕtqtPT in IsopXqwhich is
continuous for d8 on CpX, Xq by letting βt P AutpCpXqq be
given by βpf q :“ f ˝ ϕt.

 q-deformations
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q-DEFORMATIONS

§ Perhaps surprisingly, some of the most central objects in
NCG are not yet well understood from the QMS point of
view — at least not in a way that reflects the geometry
well.

§ An example is Podleś’ q-deformed 2-sphere S2
q.

§ Actually, only in 2018, Aguilar and Kaad showed that the
Dąbrowski-Sitarz Dirac operator, Dq, turns S2

q into a
spectral metric space.

§ Recall that CpS2
qq :“ CpSUqp2qqT

§ Concretely, CpS2
qq is generated by a selfadjoint Aq and a

non-selfadjoint Bq from PolpSUqp2qq.

 spectrum of Aq
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§ One has σpAqq :“ t0u Y tq2k : k P N0u and σpA1q “ r0, 1s, so
σpAqq can be thought of as quantised intervals.

§ And CpσpAqqq » C˚pAqq Ă CpS2
qq inherits the structure of a

compact quantum metric space, which therefore defines a
metric dq on σpAqq.

§ Similarly, Cpr0, 1sq » C˚pA1q Ă CpS2q inherits the structure
of a compact quantum metric space, and hence defines a
metric d1 on r0, 1s.

§ It is not difficult to check that pr0, 1s, d1q is isometrically
isomorphic to r0, πswith the standard metric dR from R.

§ In a recent joint work with Gotfredsen and Kaad we obtain
a concrete formula for dq, and show that

`

Xq, dq
˘

distGH
ÝÝÝÝÑ

qÑ1
pr0, πs, dRq

§ The convergence therefore also holds as quantum metric
spaces with respect to distq

GH.
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A QUICK GLIMPSE INTO THE FUTURE

§ The previous result can be viewed as a ‘proof of concept
result’ indicating that perhaps the quantised spheres S2

q

converge to the classical sphere S2 as q tends to 1.
§ In a joint project with Jens Kaad and Konrad Aguilar, we

are currently working on this problem.
§ Actually, we are quite close to a full proof, but there are

still i’s to be dotted and t’s to be crossed.
§ But hopefully we should be ready with a preprint soon.
§ Stay tuned.....
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